

- Ideal Front-End Filter for 433.92 MHz Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Ultra Miniature Ceramic SMD Package
- Complies with Directive 2002/95/EC (RoHS Compliant)

SF5505

Absolute Maximum Rating (T _A =25°C)							
Parameter		Rating	Unit				
Input Power Level	P_{in}	10	dBm				
DC Voltage VDC Between Any Two Pins	$V_{ m DC}$	0	V				
Operating Temperature Range	T _A	-10 ~ +60	°C				
Storage Temperature Range	\mathcal{T}_{stg}	-40 ~ + 85	°C				

Electronic Characteristics (T _A =25°C)						
Parameter		Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C) (Center frequency between 3dB points)		f_{C}	NS	433.92	NS	MHz
Minimum Insertion Los	s 433.80 434.12 MHz	IL	-	2.0	4.0	dB
3dB Passband		BW ₃	670	730	790	KHz
Passband (relative to II	L) 433.76 434.08 MHz		-	1.0	2.0	dB
	433.74 434.10 MHz	α	-	1.0	3.0	dB
	433.68 434.16 MHz		-	1.5	6.0	dB
Relative Attenuation	10.00 414.00 MHz		45	50	=	dB
	414.00 428.00 MHz		35	40	-	dB
	428.00 432.84 MHz		15	20	-	dB
	434.92 442.00 MHz	$lpha_{rel}$	10	15	-	dB
	442.00 550.00 MHz		35	40	-	dB
	550.00 1000.0 MHz		45	50	-	dB
Frequency Aging	Absolute Value during the First Year	fA	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	ΜΩ

NS = Not Specified

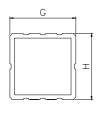
Notes:

- 1. The frequency $f_{\mathbb{C}}$ is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C . Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- Unless noted otherwise, specifications apply over the entire specified operating temperature range.

- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery please contact our sales offices or e-mail to sales@vanlong.com.

Phone: +86 (10) 5820 3910


Fax: +86 (10) 5820 3915


Email: sales@vanlong.com

Web: http://www.vanlong.com

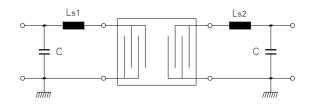
Package Dimensions (QCC8C)

Electrical Connections

Terminals	Connection	
1	Input Ground	
2	Input	
5	Output	
6	Output Ground	
3,7	To be Grounded	
4,8	Case Ground	

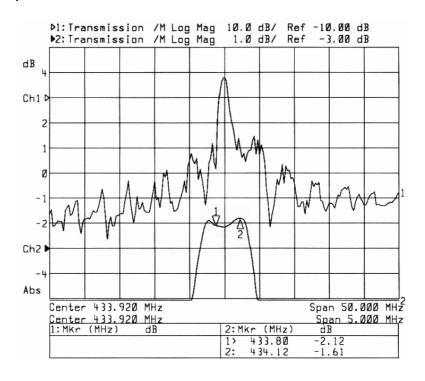
Package Dimensions

Dimensions	Nom (mm)	Dimensions	Nom (mm)
Α	2.08	Е	1.20
В	0.60	F	1.35
С	1.27	G	5.00
D	2.54	Н	5.00


Marking

- 1. F5505 Part Code
- 2. Frequency (MHz) in 6 digits
- 3. Date Code:

Y : Last digit of year WW : Week No.


Test Circuit

C = 5.6 pF * Ls1 = Ls2 = 33nH *

*Note: Component values may change depending on Board layout.

Typical Frequency Response

Phone: +86 (10) 5820 3910

Fax: +86 (10) 5820 3915

Email: sales@vanlong.com

Web: http://www.vanlong.com